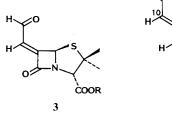

METHYLENE (2S,5R)-6-(3-FORMYLALLYLIDENE)PENICILLANATE PIVALATE, A PRODRUG OF A NEW β -LACTAMASE INHIBITOR


Sir:

In earlier papers^{$1 \sim 4$}) we described the synthesis and biological properties of the 6-acylmethylenepenicillanates, potent broad spectrum β -lactamase inhibitors. We also demonstrated⁵⁾ that the geometry of the olefin, which imparts a relative spatial constraint to the carbonyl function, plays an important role in the biological activity displayed by this class of β -lactamase inhibitors; compound 1 (Z-olefin) is more potent than 2 (E-olefin). (Fig. 1)

This paper reports further work carried out to investigate the impact on the biological activity of moving the carbonyl group on the side chain away from the bicyclic β -lactam system, but nevertheless still incorporated in a conjugated system as in 4. To this end, we exploited the high reactivity⁶⁾ of the carbonyl function of the 6-acylmethylenepenicillanates. Furthermore, in order to minimize the steric hindrance of the alkyl substituent (i.e. methyl), we chose the 6-formylmethylenepenicillanate 3 (Fig. 2) as starting material for further elongation, being nevertheless aware that the alkyl substituent also plays a role during the inactivation process⁷). Compound 3 was then submitted to the Wittig

Fig. 1. Structures of compounds 1 and 2.

Γ5 COOR 4

 $R = CH_2OCOC(CH_3)_3$

reaction with formylmethylene triphenylphosphorane; a stirred solution of the ester 3 (2.55 g, 7.2 mmol) in 25 ml CH₂Cl₂ was treated under argon at 20°C with formylmethylene triphenylphosphorane (3.35 g, 11 mmol). After 10 minutes the solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (C_6H_{12} -EtOAc, 8:2) to give pivaloyloxymethyl (2S,5R)-6-[(all-Z)-3-formylallylidene]penicillanate (4) as a light-colored oil in 55% yield (1.5 g, 3.9 mmol); IR (CHCl₃) cm⁻¹ 2752, 1769, 1755, 1689, 1609; ¹H NMR (80 MHz, CDCl₃) δ 1.23 (s, C(CH₃)₃), 1.53 and 1.6 ($2 \times s$, $2 \times CCH_3$), 4.63 (s, CHCOO), 5.85 and 5.94 (2×d, $J_{aem} =$ 5.5 Hz, O-CH₂-O), 5.99 (s, H₅), 6.5 (dd, $J_{trans} =$ 15 Hz, J = 7.5 Hz, H_{10}), 6.90 (d, $J_{trans} = 11.5$ Hz,

Table 1. Inhibitory properties against isolated β lactamases.

	IC ₅₀ (μ M) for the β -lactamase						
Compound	Proteus vulgaris 1028ª		Klebsiella pneumoniae NCTC 418 ^b		<i>E. coli</i> 1024°		
	-E	+ E	-E	+ E	E	+E	
CP-45899 4	0.11 1.4	0.0065	2.8 48	 1.5	8.0 >100	11	

E: Test carried out in the presence of $10 \,\mu$ l of hog liver esterase following the procedures described in reference 1, after a 15-minute preincubation time of the β -lactamase and inhibitor.

 β -Lactamase type:

- Inducible, chromosomally determined cephalosporinase (type Ic).
- Constitutive penicillinase (type II).

Constitutive chromosomal cephalosporinase (type I).

Table 2. In vitro synergy with ampicillin against β lactamase-producing isolates.

	MIC (µg/ml) inhibitor + ampicillin ^a					
Compound	Staphylo- coccus aureus 887	Proteus vulgaris 1028	<i>E. coli</i> 1024			
CP-45899 4	6.25 + 6.25 25 + 25	1.6 + 1.6 25 + 25	12.5 + 12.5 25 + 25			

Figures presented were selected on the basis of minimal drug concentration required for inhibition. MICs of inhibitors or ampicillin alone were in all instances greater than 50 µg/ml.

Method: Checkerboard titration.

Medium: Mueller-Hinton broth (Difco).

Inoculum: 10⁵ cfu/ml (S. aureus, 10⁶ cfu/ml).

H₈), 7.15 (dd, $J_{trans} = 11.5$ Hz, $J_{trans} = 15$ Hz, H₉), 9.76 (d, J = 7.5 Hz, -CHO). Like 1 and 2⁵), 4 shows no antibacterial activity, but it can be seen from Table 1 that the acid corresponding to 4, which is released in the presence of esterase, is a potent β -lactamase inhibitor of the enzymes tested. Its activity is comparable to that of CP-45899 (sulbactam)⁸), and is even superior against *Proteus vulgaris* 1028 β -lactamase. When tested in combination with ampicillin, 4 is also active *in vitro* against several β -lactamase-producing ampicillin-resistant organisms (Table 2).

> S. Adam R. Then P. Angehrn

Pharmaceutical Research Department, F. Hoffmann-La Roche AG, 4002-Basel, Switzerland

(Received September 28, 1991)

References

 ARISAWA, M. & R. L. THEN: 6-Acetylmethylenepenicillanic acid (Ro 15-1903), a potent β-lactamase inhibitor. I. Inhibition of chromosomally and R-factor-mediated β -lactamases. J. Antibiotics 35: 1578~1583, 1982

- ANGEHRN, P. & M. ARISAWA: 6-Acetylmethylenepenicillanic acid (Ro 15-1903), a potent β-lactamase inhibitor. II. Antibacterial properties. J. Antibiotics 35: 1584~1589, 1982
- ARISAWA, M. & S. ADAM: Mechanism of inactivation of TEM-1β-lactamase by 6-acetylmethylenepenicillanic acid. Biochem. J. 211: 447~454, 1983
- ADAM, S.; W. ARNOLD & P. SCHÖNHOLZER: Sulfoxides of penicillanates with non classical substituents in the 6-position. Tetrahedron 39: 2485~2491, 1983
- ADAM, S.; R. L. THEN & P. ANGEHRN: 6-(E)-Acetylmethylenepenicillanic acid, a potent β-lactamase inhibitor. J. Antibiotics 40: 108~109, 1987
- ADAM, S.; R. THEN & P. ANGEHRN: Potential prodrugs of 6-acetylmethylenepenicillanic acid (Ro 15-1903). J. Antibiotics 39: 833~838, 1986
- 7) ADAM, S.; R. L. THEN & P. ANGEHRN: Synthesis, structure-activity relationships of 6-acylmethylenepenicillanic acids and related compounds. 8th International Symposium on Future Trends in Chemotherapy, Tirrenia (Pisa), 1988
- 8) English, A. R.; J. A. RETSEMA, A. E. GIRARD, J. E. LYNCH & W. E. BARTH: CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: Initial bacteriological characterization. Antimicrob. Agents Chemother. 14: 414~419, 1978